Steven A. Simmons

MV 3250 – Class Project Report

6 Jun 02

Using XML to bridge the gap between a Web-Enabled Database and legacy heterogeneous
USMC Manpower Data Systems

1.
Description. The project shows a sample demonstration of my thesis work which involves developing a prototype web site that allows the small unit leader (Company Commander) to access (Read/Write) manpower data for the Marines in the unit (Company sized element). The single source of USMC manpower data is kept in a flat file on a Main Frame in St. Louis, MO. Reading this data to display on a web page is not too difficult. The challenging part in the past has been allowing a user to make data updates to this data and returning these updates to the main frame. I will demonstrate the use of ASPs (active server pages) to display manpower data to the user and allow that user to make updates to the data. These updates will be returned to the web server where an XML document will be generated using MSXML DOM. This XML document will contain the data updates and other required codes by which the XML document can be transmitted and processed on the main frame to update the single source of USMC manpower data.

2.
Background. Currently, all manpower data viewing and updating must be done through the Battalion administrative section. Admin clerks use a proprietary FAT client called UDMIPS, or Unit Diary Manpower Information Processing System to input data updates and/or inserts on a daily basis. These transactions are called “unit diaries”. The UDMIPS software not only provides a user interface for the data entry, but also at the end of the day, transmits the data in the “right format” to a collection server in St. Louis, MO where in the middle of the night, a “cycle” is run on a main frame computer that updates the “Master File” data file (database) for all Marine Corps Manpower/Pay data. After the cycle, a relational database is refreshed and then the replicated slices of this database at local level (Base or Station) is refreshed which is used to access (READ) data the next day for the next round of diary transactions. For many reasons the Marine Corps cannot divorce itself from single source of data residing on a 20+year old system. So, we are stuck with interfacing with this system.

Over the past 2-3 years the manning of the 0151 MOS (admin/diary clerks) has been cut by almost 2000 personnel and Bn admin sections have been consolidated into one “mega” admin center to service several battalions. The idea was that IT technology was such to support a cut in admin clerks and to power down some of the “unit diary transactions” down to the units. The program to support this effort is called TFAS (Total Force Administration System). TFAS has five echelons of users: 1-Individual Marine, 2-Small Unit leader, 3-Battalion/Squadron, 4-Admin Center, and 5-Service.

My thesis is to develop a design and prototype web site which allows the small unit leader to view their Marines data in useful ways to make decisions. In addition to viewing data, these small unit leaders will be given some WRITE capability to non-pay related fields, such as training data, uniform sizes, phone number, etc. The idea is for the script on the web server to read the local database mentioned above, to display data to the user. When the user updates a piece of data (say a Physical Fitness Test Score), this data is written back to the local relational database for current local access. In addition to this local update, the server must also somehow get that data in the right format (“Unit Diary” Transaction as described above) so that it can be transmitted along with “normal” daily diaries.

Depicted below is a work flow diagram of the TFAS Web Site:

[image: image1.png]TFAS Echelon IT (Small Unit Leader)
Distributed Web & Database Server Model

Daily Work Flow

Stps
Diary Files Transnitted Dadly to Collection Server
in St. Lovis, MO for Nightly runcf "Cycle”

stp3
ML Dieries created
onServer, stotedin

Network Disectory

Stp 4
ML Diies loaded to local
UDMIPS software and
transformed into "Diaries

g
After "Cyele” Runs, the MCTFS Master fle
is read -out 10 a relational DB (Oracle &)

Loca DB Mo AST FO0SE) WCTFS HabiFie

Sp?
Backend Database

serves up datato uses

517
Fusn Repliation Service on LOcal DB
L] - get all updates from Nationsl ODSE

Clent

Stpl
Client Requests Reports

& does Data Entry

3.
XML Task. The XML task is to have the web server take the data inputted by the user via the web page along with some data elements from the local database and produce an XML document with the correct and necessary data for a diary transaction. These XML files will be placed in a directory on a local collection server here they will be read into the UDMIPS system where they can then be converted to valid main frame ready files (streams of data) that can run on the cycle for the master file update in St. Louis.

4.
Sample Code. During my presentation, I showed the TFAS prototype web site and walked through the example of a TFAS user inputting data for a PFT (Physical Fitness test Score on a Marine). It was shown how after the user inputted the data and clicked the submit button, a XML document was created dynamically in a network directory that contained the data for this diary transaction. The code behind these process is fairly lengthy so I will not include it here. However, below is a fairly simple web page that takes user input via a simple HTML form and constructs a XML document from that input. The code required for this simple example is less than a page and students can easily understand it. It uses the MSXML DOM ASP code I used in my project, but is not as lengthy and involved.

The following are screen shots and the code that produces each page.

a.
Simple HMTL Form (Input.htm)

[image: image2.png]Input Form

<HTML>

<HEAD>

<META NAME="GENERATOR" Content="Microsoft FrontPage 5.0">

</HEAD>

<BODY bgcolor="#ffff99">

<P align="center">Input Form</P>

<hr>

<form method="post" action="processXML.asp">

<center>

<table border="0" style="BORDER-COLLAPSE: collapse" bordercolor="#111111" width="50%" id="AutoNumber1">

 <tr>

 <td width="50%">FName:</td>

 <td width="50%"><input name="fname" id="fname" ></td>

 </tr>

 <tr>

 <td width="50%">LName:</td>

 <td width="50%"><input name="lname" id="lname"></td>

 </tr>

 <tr>

 <td width="50%">Phone:</td>

 <td width="50%"><input name="phone" id="phone"></td>

 </tr>

 </table>

 </center>

<DIV></DIV>

 <p align="center"> </p>

 <p align="center"><input type="submit" value="Submit" name="B1"><input type="reset" value="Reset" name="B2"></p>

</form>

</BODY>

</HTML>

b.
Clicking Submit calls an ASP (processXML.asp)

[image: image3.png]Your form submission has been saved.

Click here to View the XMT. File

<%@ Language=VBScript %>

<HTML>

<HEAD>

<META NAME="GENERATOR" Content="Microsoft Visual Studio 6.0">

</HEAD>

<%

Dim oDOM

Dim root

Dim field

Dim objPI

Dim lname

Set oDOM = server.CreateObject("Microsoft.XMLDOM")

oDOM.preserveWhiteSpace = True

‘Create the root element w/ name “Person”

Set root = oDOM.createElement("Person")

oDOM.appendChild root

‘Loop through all the Request variables and get the name & values of the data items sent by the calling page

For x =1 To Request.Form.Count

‘we do not want Button data

If instr(1,Request.Form.Key(x),"btn") = 0 Then

If instr(1,Request.Form.Key(x),"B1") = 0 Then

‘create an element w/ name of Form element sent by Client

Set field = oDOM.createElement(Request.Form.Key(x))

‘Set element text (PCData value)

field.Text = Request.Form(x)

‘Append element to Root element

root.appendChild field

End If

End If

Next

Set objPI = oDOM.createProcessingInstruction("xml", "version='1.0'")

oDOM.insertBefore objPI, oDOM.childNodes(0)

‘Save the the DOM object as an XML document to the following Path & File name

oDOM.save "C:\test.xml"

 'Release all of your object references.

 Set oDOM = Nothing

 Set root = Nothing

 Set field = Nothing

 Set objPI = Nothing

'Do not break on an error.

On Error Resume Next

'Call the ConvertFormtoXML function, passing in the physical path to

'save the file to and the name that you wish to use for the file.
ConvertFormtoXML "C:","test.xml"

'Test to see if an error occurred, if so, let the user know.

'Otherwise, tell the user that the operation was successful.
If err.number = 0 then

 Response.write("Errors occurred while saving your form submission.")

Else

 Response.write("<P align=center>Your form submission has been saved.</P>")

End If

%>

<BODY bgcolor="#ffff99">

<P align=center>

Click here to View the XML File

</P>

</BODY>

</HTML>
c.
I then provide a link to open the XML called test.xml that was created on C:\ of the server.

[image: image4.png]2 C:\test.xml - Microsoft Internet Explorer

Fie Edt Vew Favorkes Took Hep
ok - o - D [4| Qewch (alravorss Gveds 3| S HO W& R
addvess [] Cpestont =] P ks 7
<?xml version="1.0" 7>
- <person>
<fname=Steve</fnames>
<Iname>8immons</Iname>
<phone>111-1111</phone>
</Personz
Eioone [T [y Comper

start || @ 3 1] || B)sample.doc - Microsoft ... |[E]c:\testuml - Microsoft.. €I RLBERHD 1sean

PAGE
5

