Dynamic Generation of Web Based 3D Graphics Scenarios Utilizing XML

Name: James Harney, LT USN

Course: MV/OA 3250

Date: 10 June 2002

1. [image: image1.png]Background: Coming in to the course, I had developed a user-centric graphical user interface geared towards U.S. Navy surface officers and the tactical planning for surface ship defense against the water-born threat. The user would set up a simulation environment in 2-D and then run and view utilizing pre-constructed X3D graphics in the Netscape 4.7x web browser using the no longer developed California Associates Cosmoplayer Virtual Reality Modeling Language (VRML) plugin. Became problematic when attempting to extend the application to other geographic locations as far as having to maintain numerous pre-fabricated X3D visual scenes.

Figure 1: Screen Capture of the User Interface for the ATFP Simulation Application
2. Problem: To investigate what is required to dynamically produce web-based visualizations of simulations by non-programmers within my thesis application geared towards Anti-Terrorism/Force Protection.

3. Solution: Researching previous thesis and faculty work at NPS and implemented the following:

A. Schemas, DTD Design, and my Java Object model:

Suspecting that XML or Java serialization would need to be used within my thesis work, I designed an object model with the idea that the applicable data needed to be available in a centralized fashion for writing to disk in whichever manner was

Chosen.

[image: image2.jpg]

Fig 2: Scenario.java Class model
The Scenario Class is mainly a wrapper to contain the classes representing entities of interest within our scenario with the idea being to extend the Scenario Class in a future quarter to contain vectors of entities vice single instances. All potential full fledged members of the Scenario class inherit from a common ScenarioComponent class that allow us to add various entities guaranteed to have things such as x, y, z, roll, pitch, yaw, type, etc.

B. Although many tools were tried, the final DTD generated for this quarter’s project was generated using the standard Window’s text editor. Schema was auto-generated utilizing TogetherSoft’s Together 5.5 software engineering tool and further modified using a standard text editor. Trial versions of the TogetherSoft application. can be downloaded at www.togethersoft.com with an academic license for use available to students through Professor Don MacGregor (mcgredo@nps.navy.mil).

[image: image3.png]
Figure 3: Screen Snapshot of TogetherSoft 5.5 Application

C. X3D: Extensible 3D graphics is an ongoing effort by the Web3D organization (http://www.web3d.org) to encode the Virtual Reality Modeling Language 1997 specification in XML while identifying and correcting many of the deficiencies in the VRML97 standard identified by the web community over the past several years. X3D is the graphics format of choice for my thesis work. Additionally, there is an X3D/Vrml97 content library freely available online through Dr. Don Brutzman’s website at http://web.nps.navy.mil/~brutzman/Savage/contents.html, which consists of over 2000 visual models that can be used in component like fashion when constructing tactical scenarios of interest.
[image: image4.jpg]Figure 4: Screen Capture of the X3D File Editor

3) XSL Design: So, our primary problem as identified at the start of the quarter, was how to allow the end user to dynamically create tactical scenarios of interest in X3D to be viewed in web enabled viewers. Once we had our DTD and schema design complete, what remained was to create an XSLT that could transform the XML instance created by our application into the viewing content of interest. A few tools were investigated to this purpose, but none was identified that could t be used in other than a trial version with short expiration deadline type of manner. As a result, the Windows and Forte 3.0 text editors were utilized to develop. The Saxon light tool-kit transformation engine was utilized for testing of the ScenarioToX3D.xsl stylesheet. The light version of the tool is approx 1.1 megabytes in size, so does not constitute a heavy weight tool to be utilized for the purposes of the thesis work. The ultimate goal was not to use the Saxon tool once incorporating all materials back into my thesis application. This however, proved problematic when trying to use Dr. Brutzman’s X3DtoVrml97.xsl that is bundled with the X3D editor found at the Web3D.org website within the Java application. The JDOM API simply interfaces for the user to the JAXP translation package within the Java development kit 1.4.0. As a result, transformations from the well-formed XML encoded X3D content generated by the application would fail when using this manner in an attempt to translate to a renderable content in current Vrml97 browser plug-ins to view the scenarios generated. So, the manner utilized to finish the quarters project with a functional 3D view in the web browser was to utilize the Java Runtime Class to make a DOS command line call to Saxon to transform the data and then load within the web browser on the user’s machine. Assumptions made for this manner to work are the installation of the Netscape 4.7x Internet browser on the client, installation of the DIS-Java-VRML library on the client computer’s local disk. The abbreviated version of what the DOS prompt command run is: c:\saxon\saxon –o MyOutput.wrl MyInput.x3d X3DtoVrml97.xsl The Saxon engine can be contained within our application, and since the application is developed for U.S. navy users who are mandated to be on Windows based machines that have Internet Explorer and Netscape Communicator installed, so these shortcomings are accepted for the near term for this view.
D. Incorporating into the Java Application: We alluded to the use of JDOM in para C. Beginning the project, it was intended to use no API for the XML operations not included wholly in the standard jdk1.4.0+ in order to minimize application size. One item discovered, however, was the majority of exemplar XML applications available dealt with XML instance files generated by something other than within a Java application. As a result, 2 separate attempts using DOM only and then Saxon with DOM failed in created a scenario instance XML Document within the Java applications memory or to disk. Each case to be successful would necessitate my using some form of text input/output not part of any XML API. As a result, although this manner would have worked, I considered it not to be in the spirit of taking an XML class, so turned to the JDOM API.
The JDOM API proved to be very straightforward in creating and manipulating Document trees in memory and writing to or reading from disk. Transforming XML instance data to other well formed data types such as XHTML or X3D was also straightforward when examining exemplar content provided in the /samples directory that comes bundled with the API. JDOM version beta 8 was utilized for the project.

Standard concerns of other developers of using the JDOM API I encountered while researching for the project seemed to lie in the fact that since it’s an open source project that may or may not get bundled with the Java Run Time environment and Development Kit at a future date that the import signatures could change breaking legacy content. I came to a different opinion through various research and examination of Sun’s incorporation of the DOM API within the current Java build. They are keeping the import syntax the same for approved open-source projects that are bundled with Java in order to allow end users to update these APIs without necessitating a JDK or JRE update by placing in the approved extension directory, see the sun.com/developers website for details on the exact syntactical location. Additionally, the JDOM API has begun the Java Community process for consideration for incorporation in the next release of Java due in mid 2003 (version 1.5.0) tentatively. Third note is that JDOM is an approved extension for Java by Sun. With these items considered, one might argue, well what happens if Sun still changes the import lines for the JDOM classes. 2 responses to this argument can be made: 1) When deploying a Java application through an installer such as InstallAnywhereNow!, one should take the option to bundle a specific Java runtime environment for their application. In this manner you can guarantee it will still run independent of what version of Java is installed on the client’s machine. 2) See below for more information, but by deploying Java applications through the Java Network Launching (JNLP) protocol and Webstart, specific JRE’s and extensions can be required, detected, and downloaded for running one’s application without ‘polluting’ the client computer with unwanted and possibly outdated infrastructure. These solutions however do not prevent code rust from setting in on any undeveloped code for a period of time, so proper documentation for library API requirements and possible headaches later should be made to aid in possible troubleshooting efforts later by others.

E. Incorporating an Alternative View: With the difficulties that can sometimes arise with deploying Java and specific web browser based solutions, it was decided to implement an alternative 3D view still based on X3D graphics for model representation. As a result, exemplar content and implementation was developed within the NPSNET V framework using the open source Xj3D project as the basis for the loader code for Java3D. NPSNETV represents models, views, and controls through XML that through reflection invoke the applicable Java classes and Vrml97 or X3D views within Java Frames. The Xj3D implementation of the Vrml97 specification is not yet complete, so it is still not able to load 100% of the content viewable in a web browser, but is getting close. Since only a reference to the geometry rendered is maintained within the NPSNET V XML, such as:

<View type="org.npsnet.v.properties.view.j3d.J3DView"

 class="org.npsnet.v.views.j3d.VRMLView">

<Scene name="org/npsnet/v/views/atfp/ArleighBurkeGenericNPSNET.wrl"/>

 </View>

Some other interesting items discovered with utilizing the NPSNETV java3d view of the content were: 1) Incorporating a ‘stereo’ view of content which is not possible with the web browser view simply is as easy as adding about 5 lines of XML. This makes CAVE viewing of tactical content of interest possible and web enabled. A stereo view for the uninitiated is the ability to have multiple, simultaneous views of the same graphical scene. Very possible for OpenGl and other graphics standards for many years, but has proven difficult in implementation for those using Web enabled content.

4) 2) The marriage of XML with existing source allows one to create graphical content of interest with only a text editor and without compiling in this framework if sufficient entities are represented. This is the goal of the project, but I still had to code some due to it being in the beginnings of the project.

5) Both NPSNETV and the Xj3d open source project take the view that rendering

contexts come and go, but frameworks to represent should not. As a result, NPSNET is capable of rendering utilizing the OpenGl 4 Java open source project, and Xj3d is in progress of implementing rendering of X3D graphics in OpenGl as well. As these efforts continue to mature, adoption of X3D looks to continue to expand and as a result the use of legacy material in other formats should become easier to convert and use by DoD for use in large scale modeling and simulation efforts allowing students to concentrate more on the science and exploration of M&S vice the creation of [image: image5.jpg]geometry to use in experiments.
Figure 5: NPSNET V view of the Scenario

F. Short Investigation into Java Application Delivery using JNLP, Webstart, and XML
While researching the Sun jdk1.4.0 and the differences in the previous 1.3.1_03 used in my thesis work, ran into JNLP and Webstart. The short idea is to be able to deliver heavy weight Java applications to the client, allow them to be cached and run off-line, allow for piecemeal versioning and updates, and for on the fly downloading of required libraries to run in the Web Start client on the end-user’s machine. Webstart still maintains a security sandbox through this process. For anyone that has developed with Applets, this is a nice alternative to using Java based installers. Say, one wants to run and try out my code, but wants to do it with one click or 2 clicks of the mouse with not waiting for the entire application to be loaded as you have to do with an Applet. Well, in the JNLP file that is the link one’s web page you include the requirements that your application depends on and references to where to download automatically from and Webstart takes care of the rest. Downloaded content can also be added to the users programs menu and desktop in Windows to allow for running in a manner the same as any other Windows based application without DOS-batch files or C based application files generated by many installer programs. The JNLP file is a free-formed XML file loosely based on Sun’s DTD found in the Java Network Launching Protocol and API Specification v1.0.1 JSR-56 downloadable from the Sun website. Of particular interest to the student who might read this through page 5, is this was the first Java tool or API I used in this quarter that worked for me on the first try within 30 minutes. Following is an exemplar of a JNLP file that when used with a self signed jar file generated with the jar signing tool that comes bundled with the JDK allows for application delivery and sending and receiving of network packets on the client. It does require 2 clicks vice one by the end user for running the application the first time unless my public certificate is installed on the client before hand. Future runs though, do not require more than 1 click. Testing was conducted through the local host on the machine utilized for development as well as with the Apache server on the .21 subnet within the MOVES Institute.

<?XML version="1.0" encoding="UTF-8"?>

<jnlp codebase="file:///c:">

 <information>

 <title>ATFP Application</title>

 <vendor>NPS</vendor>

 <homepage href="docs/test.html"/>

 <description>Test application</description>

 <description kind="short">A demo of the ATFP app.</description>

 <icon href="usa.gif"/>

 <offline-allowed/>

 </information>

<security>

<all-permissions/>

</security>

<resources>

 <j2se version="1.4.0*" href="http://java.sun.com/products/autodl/j2se"/>

 <jar href="trustedatfp.jar"/>

 </resources>

<application-desc

 main-class="mil.navy.nps.atfp.ATFPMain"/>

</jnlp>
4. Conclusion: Found it possible to accomplish the goals of the project as set forth at the start of the quarter, dynamic scenario generation of tactical scenarios of interest in the Anti-Terrorism, Force Protection domain. With this component added, the road map for my thesis work for extending my current content to much larger and complicated scenes has been set. A few detours were taken with the NPSNETV and jnlp and Webstart work, but found them to be both worthwhile and XML based. Also found taking the time to learn to do XML with a text editor really aided my learning curve and know if a tool of interest actually made life easier or not. The standard rule of thumb I came to develop during the quarter was that if a tool took longer than 60 minutes from download to ‘Hello World’ content creation, was not worth my time.
� EMBED Word.Picture.8 ���

[image: image6.jpg]_1085473003.doc
[image: image1.png]

