
Proceedings of the 1996 Winter Simulation Conference

ed. J. M. Games, D. J. Morrice, D. T. Brunner, and J. J. Swain

ABSTRACT

MODELING WITH EVENT GRAPHS

Arnold H, Buss

Operations Research Department

Naval Postgraduate School

Monterey, CA 93943-5000, U.S.A.

Event Graphs are a way of graphically represent-

ing discrete-event simulation models. Also known as

“Simulation Graphs,” they have a minimalist design,

with a single type of node and two types of edges with

up to three options. Despite this simplicity, Event

Graphs are extremely powerful. The Event Graph is

the only graphical paradigm that directly models the

event list logic. There are no limitations to the ability

of Event Graphs to create a simulation model for any

circumstance. Their simplicity, together with their

extensibility, make them an ideal tool for rapid con-

struction and prototyping of simulation models. In

this paper we will demonstrate the ability of Event

Graphs to leverage simple models into more complex

ones with very few additional features.

1 INTRODUCTION

Several extensions to Event Graph capabilities have

been introduced (see Schruben, 1995), including can-

celing edges, passing parameters on scheduling edges,

and the use of data structures. This paper presents

some of the ways these features may be utilized to

enhance Event Graph modeling. Of particular inter-

est is the ability to easily leverage simple models into

more complex ones.

When considering extensions to any model or

methodology, care must be taken to avoid the

methodology becoming burdened with too many fea-

tures, destroying the elegance and utility of the orig-
inal. With this paper we hope to demonstrate the

viability of the extensions to the basic Event Graph

paradigm aa genuine enhancements to the construc-

tion of models. While the formal modeling power is

enhanced, the ease of use and the quality of the re-
sulting models are both improved.

In the following section we review the basics of

Event Graph methodology and Section 3 we present

153

some examples.

hanced features

Following that, we describe the en-

and show examples of their use.

2 BASICS OF EVENT GRAPH MO~DELS

We assume the reader is familiar with the basic con-

cepts of discrete event simulation (see any introduc-

tory text such as Law and Kelton 1991), so we will

only briefly review the components.

Two fundamental components of a discrete event

simulation model are a set of state variables, and a

set of events. The model emulates the system be-

ing studied by producing state trajectories, that is,

time plots of the values of the system’s state vari-

ables. Measures of performance are determined as

statistics of these state trajectories. Discrete event

models have state trajectories that are piecewise con-

stant. Events are the points in time at which at least

one state variable changes value. It is important to

note that an event is an instantaneous occurrence in

the discrete event model. No simulated time passes

when an event occurs; simulated time passes only be-

tween the occurrence of events.

The timing of the occurrence of events is controlled

by the Future Event List (or simply the Event List),

which is nothing more than a “to-do” list of scheduled

events. Whenever an event is scheduled t,o occur,

an event notice is created and stored on the future

events list. Every event not ice contains two pieces

of information: (1) What event is being scheduled;

and (2) The (simulated) time at which the event is to

occur. The future event list keeps the event not ices in

order by ranking them based on the lowest scheduled

time. Events occurring simultaneously in simulated

time must be prioritized according to some secondary

rule.

The future events list is managed by a “Timemas-

ter” who controls the flow of time in the simulated

world of the model. The Timemaster examines the

event list to see if there are any scheduled events.

154 .BUss

(3
(i)

A (

‘w t

Figure 1: Fundamental Event Graph Construct

An empty list means there is nothing to do, so

the Timemaster terminates (i.e. the simulation run

ends). If the event list is not empty, the Timemaster

updates the simulated clock to the time of the first

event notice and executes the associated event — that

is, the state transitions associated with that event are

invoked. Note that the terminating condition (empty

event list) means the simulation must be initiated

with at least one scheduled event for any event to

actually occur. We will follow Schruben’s (1995) con-

vention of a single distinguished event (Run) that is

always on the event list initially.

When an event occurs, all state changes are made.

Next, all further events are scheduled, and finally the

event notice is removed from the Event List. The

events scheduled are specified by the occurring event

itself and may be conditional on certain values of the

current state. The order of execution for these three

steps could be alt ered, but the resulting models would

be different. Although it is possible to mix up the

actions (e.g. First change some states, then schedule

some events, then change some more states, etc.), the

resulting model would be confusing and prone to er-

rors. There is considerable benefit from adapting a

convention such as the one above.

Event Graphs are a way of representing the Future

Event List logic for a discrete-event model. An Event

Graph consists of nodes and edges. Each node corre-

sponds to an event, or state transition, and each edge

corresponds to the scheduling of other events. Each

edge can optionally have an associated Boolean con-
dition and/or a time delay. Figure 1 shows the funda-
mental construct for Event Graphs and is interpreted

as follows: the occurrence of Event A causes Event

B to be scheduled after a time delay oft, providing

condition (i) is true (after the state transitions for

Event A have been made). By convention, the time
delay t is indicated toward the tail of the scheduling

edge and the edge condition is shown just above the

wavy line through the middle of the edge. If there is

no time delay, then t is omitted. Similarly, if Event B

is always scheduled following the occurrence of Event
B, then the edge condition is omitted, and the edge

is called an unconditional edge.

Thus, the basic Event Graph paradigm contains

only two elements (event node and scheduling edge)

‘A (B >0)

(Starl

$:{

Service
t~

{Q++} -M{Q--,B--}

(Q> O)

uService

{B++)

Figure 2: Discrete Event Model for Multiple Server

Queue

with two options on the edges (time delay and

edge condition). The simplicity of the Event Graph

paradigm is evident from the fact that we can rep-

resent any discrete event model using only these

constructs (Schruben 1992, 1995; Schruben and

Yiicesan 1993). A major advantage of the minimalist

approach of Event Graphs is that the modeler can

spend more time on model formulation and less on

learning the constructs of the paradigm.

There is a price to the simplicity of Event Graphs,

however. Since Event Graphs represent the event

scheduling relationship, rather than the physical

movement of, say, customers through a queueing sys-

tem, Event Graphs require a higher degree of abstrac-

tion on the part of the user than other graphical sys-

tems. The author’s experience using Event Graphs in

an introductory simulation course indicates that this

higher abstraction is easy to master and provides rich
payoffs for understanding and creating discrete event

simulations. Indeed, the use of Event Graphs tends

to accelerate the understanding of the Discrete Event

paradigm.

3 EXAMPLES

3.1 The G/G/k Queue

An Event Graph model for the standard G/G/k
queue is shown in Figure 2. The state transitions for

each event are shown in curly braces beside the corre-

sponding node. The model utilizes the C notation for

incrementing (‘++’) and decrementing (‘––’) vari-

Modeling with Event Graphs 155

ables).

3.2 Tandem Queue Model

The G/G/k queueing model of the previous section

may be extended to a tandem queueing model by con-

necting copies of the model together, as shown in Fig-

ure 3. The two stations have their respective events

and state variables indexed by the station, so that Qi

is the number of parts in the queue for workstation

i = 1,2, for example.

This stringing together of models superficially re-

sembles the corresponding models in simulation lan-

guages with process interaction world views (GPSS,

SIMAN, etc.) in which transaction block diagrams

are connected. However, in the process languages,

connecting blocks indicates transactions that get

passed, whereas for Events Graphs it is the scheduling

of events that is added. Since neither transactions nor

entities are being passed, Event Graph models may

be connected in more intricate ways, leading to much

greater flexibility and more potential for modularity.

While very straightforward, this approach to the

tandem queue model does not leave enough flexibility

in the number of stations that can be modeled. The

number of workcenters is hard-wired into the struc-

ture of the model, so that a different model is needed

for each size shop. This is needless repetition of the

model’s logic, since the fundamental dynamics of an
N-workstation tandem queueing model are exactly

the same regardless of the value of iV. A more robust

approach is to have a single model for the tandem

queueing structure and have the capability to specify

iV at runtime. That is, the number of stations in the

queue is considered data for the model rather than

a fundamental structural part of the model. Such a

model is presented below when we discuss advanced

features of Event Graphs. First, however, we will give

another example of connecting two models in a useful

way.

3.3 Worker Interference Model

A workcenter has K identical machines with a sin-

gle worker operating them. Arriving parts must be

loaded on a machine (if available) by the worker. If all

machines are busy, the parts wait in a queue. Even

if a machine is available, the parts must wait until

the worker is free to load them on a machine, a situ-

at ion called worker interference. More generally, in-

terference can occur whenever multiple resources are

required to perform a task but not all are available
when the part is ready. Once loaded, machines auto-

matically process a part with no further input needed

from the worker until finished. However, when com-

pleted, the part must be unloaded by the worker.

We will construct an Event Graph model for this

scenario by combining a G/G/k queueing model (for

the loading part) with a piece that resembles the

downstream workstations for the transfer line model.

First, define the following variables:

Q = # Parts in queue awaitingw-~iw
B = Worker status (1 if idle, O if busy)

ill = # available machines (O < M < K)

U = # parts waiting to be unloaded from

machines (O < U < M)

P = Total number of parts processed

tA = Time between part arrivak

tL = Loading times

tu = Unloading times

ts = Part processing times

The loading process is identical to the G/G/k queue

described above, as shown in Figure 4, with two ex-

ceptions: (1) The condition for start ing to load a

part requires both a machine and a worker ~available,

reflected in the edge condition on the Arriva l–Start

Loading edge. (2) The loading activity requires both

a machine and a worker, reflected in the state transi-

tion for Start Loading.

The unloading piece is shown in Figure 5 Note that
the unloading portion only differs structurally from a

G/G/lc model in the arrival process: unloading is trig-

gered by the completion of processing by a machine,

not by outside arrivals. The only other difl[erence is

the fact that a machine is freed by the last event (Fin-

ish Unloading) in addition to the worker.

Now all we need to do is connect the two pieces of

the model. Since a machine starts processing as soon

as it is loaded, we can schedule a Finish Processing af-

ter Finish Loading with a delay of ts,the service time.

After the worker is finished loading a part, another

loading/unloading task may be performed, if neces-

sary. At this point there is some ambiguity in the

problem description, since it is not specified what the

worker is to do if there are parts waiting tc) be both

loaded and unloaded. Assume that the worker’s pri-

ority is unloading parts over loading parts. Then after

the Finish Loading event, a Start Unloading is sched-

uled, providing there is a part waiting to be unloaded

(i.e. if (U > O)). On the other hand, if there are

no parts waiting to be unloaded (U = O) and there

is at least one part waiting to be loaded (Q > O)

and there is a machine available to load the part onto

(Al > O), then a Start Loading maybe scheduled after
a Finish Loading. Similarly, after a Finish lJnloading

event, if no parts are waiting to be unloaded (U = O)

156 Buss

(Q1’> O) 1
I

-:Z3
{Q2++} --, -- {,2++}

(Q2 > O)

Figure 3: A Two Station Tandem Queue

{Q++} {Q--(B--, M--} \

(Q> O)

and

(M> O)

u

Finish

{B++} oading

Figure 4: Event Graph for Loading Portion of Model

(QFinish
Processing

{u++}

T(B> O)

Q
{B--} {B++, U--,

(u> o) M++, P++}

Figure 5: Event Graph for Unloading Portion of
and there are parts waiting to be loaded, then a Start Model
Loading event may also be scheduled. Note that fol-

lowing a Finish Unloading event there is no need to

check the condition (AZ > O) since M has just been
incremented. The final model is shown in Figure 6.

Modeling with .Event Graphs 157

~ (B> O)

4–)

and

‘A (M>O) ~

{Q++} {Q-+3--, M--}

(Q> O)
and +

\
Processin$

‘Y

+

.-k(M>%y+’T-Jgf
{ Fkh

u++} /’” {x}
/’

(B> O) ,
K’ (Q>O) /

,.’ (U>o) ad,,
I ,,’ (u= o),, r

,vJ”--/“,

,tu

()

Start

(

Finish

Unloading
-d

Unloading

HQAzL++]
(u> o)

Figure 6: Final Event Graph Model for Worker In-

terference Problem

Figure7: Passing Attributes on Edges

4 ADVANCED FEATURES OF 12VENT

GRAPHS

The Event Graph paradigm described above is a sim-

ple and elegant way to represent discrete event logic.

Without any further enhancements it has sufficient

flexibility and power to represent any discrete event

model. We will discuss three such enhancements of

the basic Event Graph paradigm: passing attributes

to events on scheduling edges, event-canceling edges,

and the use of data structures (instead of just simple

data types). As noted previously, these enhancements

do not increase the formal power of Event Graphs,

only their readability, ease of construction, and in

some cases the quality of the model itself.

4.1 Passing Attributes on Edges

The first enhancement provides the event node with

the capability to pass attributes on an event schedul-

ing edge to the scheduled event. Figure 7 illustrates

the basic construction and is interpreted as follows:

When event A occurs, A’s state transitions i>re made

and expression k and condition (i) evaluated. If con-

dition (i) is true, then event B is scheduled to occur

after a delay of t time units with parameter j set

equal to the computed value of k. Note that k could

be a parameter list, as with a procedure call with

arguments.

This simple enhancement allows complex models to

be built up from simpler components in a relatively

straightforward manner. To illustrate we will extend
the queueing model of the previous section to the

tandem queueing model discussed earlier. A. produc-

tion facility consists of N machine groups, ea,chgroup

having a single waiting line. Jobs enter at machine

group 1 and upon leaving go to machine group 2, etc.

For simplicity, we will assume the queues (buffers) all

have infinite capacity.

Modeling this system is made much simpler by the

observation that each machine group operates like the

multiple-server queueing system with two exceptions:

the departure from a machine group schedules t he ar-

rival of a job to the next machine group, andl the only

arrival of jobs from outside t he facility are to machine

group 1. The state space must alao be expanded to

158 Buss

(j=l)

(

\,w. u I

“u’
{B(j)++}

Figure 8: Event Graph for Transfer Line Model

identify the number of jobs in queue as well as the

number of available machines at each workcenter. It

is convenient to simply make Q and B arrays, with

Q(j) the number in queue and B(j) the number of
available machines at machine group j. Similarly, the

parameters of the system are now an array, with k(j)

the number of machines in machine group j.

Figure 8 shows the Event Graph model for the

transfer line. The similarity of this model to the

queueing model in Figure 2 is self-evident. The self-

scheduling edge for the Arrival(j) event adds the con-

dition that j = 1 to generate the arrival of jobs from

outside the shop. The other Arrival(j) events are

scheduled from the previous machine group. How-
ever, an End Service(j) event with j = IV results in a

job leaving the system. Therefore, there is the condi-

tion j < IV. All other edges in the model are the same

as the corresponding ones in Figure 2, with param-

eter j representing the current machine group being

passed. The state transitions for the events are sim-

ilarly indexed by the corresponding machine group

number.

The transfer line model could have been modeled

using just the basic constructs in Section 2 (with-

out passing attributes) by simply stringing together

copies of the model in Figure 2 and making the appro-

priate adjustments in edges. However, that approach

would “hard-wire” the number of machine groups N
into the model. To simulate facilities having different

numbers of machine groups a new model would have

Figure 9: A Canceling Edge

to be constructed. In contrast, the Event Graph in

Figure 8 can be used to model transfer lines of any

size by simply setting the appropriate value of N and

ofk(j)for j=l, IV.

4.2 Canceling Edges

The second enhancement covers situations in which

the modeler wishes to have an event notice removed

from the event list. That is, a scheduled event needs

to be canceled. This is accomplished in a Event

Graph by the addition of canceling edges denoted by

dashed arrows; Figure 9 shows the basic construction

of a canceling edge. The interpretation of Figure 9

is: When event A occurs, then (after the appropriate

state transitions are made), if Condition (i) is true,

the next occurrence of event B with parameter j equal

to k is removed from the Event List. If there is no

such event not ice on the event list, nothing happens.

The parameter is optional and, if omitted, the next

occurrence of B is cancelled.

4.3 Use of Data Structures

The modeling power of Event Graphs is considerably

increased with the judicious use of data structures,

such as lists and priority queues. For example, in the

G/G/lc queue of Figure 2, suppose statistics on indi-

vidual customers’ times in queue are needed. These

can be determined by creating a queue containing the

times of arrival for each customer. Assume the cur-

rent value of simulated time is available in a global

variable called “Clk” (after Schruben, 1995). Upon

arrival, the value of Clk is stored in a fifo queue called

ArrivalTimes. When service is started, the time of

arrival for that customer is removed, and the differ-
ence between it and the current value of Clk is that

customer’s time in queue. We will utilize a stylized

syntax for a fifo queue (the data structure, not the

system being modeled). Add(< Queue>, < Value>)

puts < Value> at the end of the list <Queue>, and

Remove(< Queue>) removes and returns the first el-

ement of <Queue>. The only changes that need to

be made to Figure 2 are in the state transitions for

Arrival and Start Service events as follows:

Modeling with Event Graphs 159

Arrival

Q++
Add(ArrivalTimes, Clk)

Start Service
Q __, &_-

TimeOfArrival = Remove(ArrivalTimes)

TimeInQueue = Clk – TimeOfArrival

End Service

B++

Another use for lists in queueing simulations is

when service disciplines other than first-come first-

served are employed. One such rule that is often used

is shortest processing time (SPT). The state changes

for the Event Graph of Figure 2 can be modified by

generating each customer’s service time ts upon ar-

rival to the system. The service times are then put

on a priority queue called ServiceTimes, ranked ac-

cording to the smallest value. The new state changes

are:

Arrival

Q++

Generate ts

Add(ServiceTimes, ts)

Start Service
Q- -, B--

ts = Remove(ServiceTimes)

End Service

B++

The use of data structures such as fifo and priority

queues for Event Graph modeling is generic in that

no specifications are made with regard to their actual

structure or implementation. Any implementation of

Event Graph methodology should utilize the most ef-

ficient data structure for the task.

4.4 A Queue with Reneging

In a G/G/k model, suppose customers who wait in

the queue for more than tR time units renege, that

is leave the system without receiving service. The

reneging behavior can be modeled in a straightfor-

ward manner using a canceling edge, as shown in Fig-

ure 10. Each customer’s renege event is ‘scheduled’

upon entry to the system. Since each customer’s re-

nege time is different, the order of reneges is not nec-
essarily the same as the order of arrival to the system.

Therefore, we add the state variable A which rep-

resents the cumulative number of customer arrivals.

,,
f 7

L“.#“ \\n//
()Renege

(j

‘ End

.&,
Service
“.——,’

Figure 10: Modeling Customers’ Reneging

Thus, A gives each customer a unique number in the

Arrival event which is then passed to the Renege event

via its scheduling edge. If t he Renege event occurs be-

fore Start Service, the corresponding customer is re-

moved from the queue and the number in queue is

decremented. On the other hand, if the Start Service

event occurs first, then the Renege event correspond-

ing to that customer is canceled. The state changes

are summarized as follows:

Arrival Start Service

Q++, A + + Q- -, B--

Generate ts S = Remove(Queue)

Add(Queue, A)

Renege(j) End Service

Q-- B++

Remove(Queue, j)

Figure 10 utilizes passing a parameter on a cancel-

ing edge. When Start Service occurs, the number of

the customer about to receive service (S) is removed

from Queue and the event list is scanned for a Re-

nege event with parameter value S. When that event

is found, it is removed from the Event List, thus can-

celing the scheduled Renege event. Since a Renege

event may have occurred prior to the Start Service,

successive values of S are not necessarily sequential.

5 CONCLUSIONS

We have given a brief overview of the use of some

advanced feat ures of Event Graphs for discrete-event

160 Buss

simulation models. Event Graphs are currently the

only graphical tool that directly models the Event

List paradigm. The enhancements we have described

here allow the modeler to easily leverage simple mod-

els into more complex ones. More important, the vi-

sual power of the Event Graph gives the modeler a

unique perspective on the model and allows the key

underlying relationships to be vividly represented.

The availability of Event Graph software in the form

‘M Schruben, 1995) allows simulation mod-of Sigma (

elers to take advantage of the benefits offered by the

Event Graph paradigm.

ACKNOWLEDGEMENTS

The author wishes to thank Paul Sanchez and Brian

Wlddowson for very helpful comments on an ear-

lier draft of this paper. Support for this work from

the Naval Postgraduate School is gratefully acknowl-

edged.

REFERENCES

Buss, A. 1995. A Tutorial on Discrete-Event Mod-

eling with Simulation Graphs, Proceedings of

the 1995 Winter Simulation Conference, C. Alex-

opoulis, K. Kang, W. Lilegdon, D. Goldsman (eds).

Schruben, L. 1983. Simulation Modeling with Event

Graphs, Communications of the ACM, 26, 957-

963.

Schruben, L. 1992. Sigma: A Graphical Simulation

Modeling Program, Boyd and I%ser Publishing

Company, Danvers, MA.

Schruben, L. 1995. Graphical Simulation Modeling

and Analysis Using Sigma for Windows, Boyd and

Ilaser Publishing Company, Danvers, MA.

Schruben, L and E. Yiicesan. 1993. Modeling

Paradigms for Discrete Event Simulation, Opera-

tions Research Letters, 13, 265–275.

AUTHOR BIOGRAPHY

ARNOLD BUSS is a Visiting Assistant Profes-

sor of Operations Research at the Naval Graduate

School.

