
 SIMULATION NEWS EUROPE

TECHNICAL NOTES
Discrete Event Programming with Simkit

Arnold Buss
Operations Research Department, Naval Postgraduate School

Monterey, CA 93943-5000 U.S.A.

T
EC

H
N

IC
AL N

O
TES

Issue 32/33

D
ra

ft
of

 7
/3

/2
00

2
6:

16

Introduction
This paper is a brief introduction to the use of Sim-

kit, a software package for implementing Discrete
Event Simulation (DES) models. Simkit is written in
Java and runs on any operating system with Java 2 TM
installed.

Simkit adopts DES as its fundamental world view
and does not directly implement other world views
such as process/resource. Although this makes cer-
tain simple models slightly more complex, a pure DES
world view provides more flexibility and modelling
power than a pure process-oriented world view.
Event Graph methodology is sufficiently powerful by
itself to represent any model that can be captured by
the DES framework. In particular, every model that
can be represented in the process world view can also
be represented in a pure DES world view; the reverse
is not true.

The remainder of this paper is organized as fol-
lows. First we will discuss Simkit’s implementation of
the Event List, then the primary templates for con-
structing simulation components, the SimEntity inter-
face and the SimEntityBase class. Next, we show
how Simkit starts and stops simulation execution, fol-
lowed by a simple example. Following a brief descrip-
tion of the listener patterns used in Simkit, we present
more examples. Then we show how Simkit imple-
ments two advanced features of Event Graph model-
ling, cancelling edges and passing parameters to
events, with illustrative examples for each. Finally,
Simkit’s random variate generation framework is
briefly discussed.

Event List Implementation
All DES frameworks require an implementation of

a Future Event List (FEL) to operate.

Simkit implements a FEL in a class called sim-
kit.Schedule that consists entirely of static methods
and variables. The Schedule class has a variable rep-
resenting the FEL using a Java class called
java.util.SortedSet, which contains objects of type
SimEvent. Each SimEvent object contains data on
which event it represents and what time it is sched-
uled to occur. The SortedSet object uses a Compara-
tor based on a sequence of criteria, the first being the

scheduled time. In cases of ties, the SimEvent object
can be given a priority.

Simkit attempts to hide the details of the FEL from
the simulation modeller. Instead of directly placing
events on the FEL, the programmer invokes the wait-
Delay() method on an instance of sim-
kit.SimEntityBase, as described in the following sec-
tion. The execution of the event consists of a callback
from Schedule to the SimEntity instance that originally
scheduled it.

SimEntity and SimEntityBase
Simkit provides an abstract class and an interface

to help encapsulate the Future Event List activities
(scheduling events and processing events).

The SimEntity interface specifies a set of methods
that must be implemented by any class designed to
interact with the FEL and with other simulation ob-
jects. SimEntityBase is an abstract class that imple-
ments most of the functionality for interacting with the
FEL. Recall that there are just two constructs in Event
Graphs: the event (node) and the scheduling edge
(Schruben, 1983).

Each event in a Simkit model is implemented as a
user-defined “do” methods in a subclass of SimEntity-
Base. A “do” method is simply a method starting with
the string “do.” Scheduling edges are executed using
a method called “waitDelay()” that had various signa-
tures. The simplest has signature (String, double),
where the first argumenr is the name of the event
without the “do”) and the second argument is the
amount of simulated time between when the event is
scheduled and when it occurs, that is, the delay asso-
ciated with scheduling that event. The boolean edge
condition is implemented by wrapping the waitDelay()
call in an “if” test.

For example, the basic Event Graph construct
(Schruben, 1983; Buss, 2001), is shown in Figure 1.

 15 November 2001

 SIMULATION NEWS EUROPE

TE
C

H
N

IC
AL

 N
O

TE
S

Figure 1. Basic Event Graph Construct

The event graph in Figure 1 is interpreted as fol-
lows: “When event A occurs, then if condition (i) is
true, event B is scheduled to occur after a delay of t
simulated time units.” The Simkit code corresponding
to Figure 1 is implemented in Simkit in the following
code snippet:
public void doA() {

<code to perform state transition for event A>
if (i) {

waitDelay(“B”, t);
}

}

The order of execution in a ”do” method is, by
convention, identical to that in Event Graphs: first per-
form state transitions, then schedule events (if any).

Note that the first argument in the waitDelay() call
above is a String that is the event name, not the
method name. Simkit uses Java’s reflection to deter-
mine the corresponding method. When waitDelay() is
invoked, SimEntityBase creates a SimEvent and adds
it to the FEL. Each SimEvent contains a reference to
the object that created it. When that event “occurs”
the Event List invokes a callback method on the object
that scheduled it called “handleSimEvent(SimEvent).”
Normally, the programmer does not have to deal with
this method, however. The SimEntityBase class im-
plements the handleSimEvent() method to invoke the
“do” method indicated by the data in the SimEvent.

When the SimEntityBase instance receives the
event, it attempts to find a matching “do” method for
that event based on its name. In the example above,
when the event with name “B” is received from the
Event List, the scheduling object prepends the string
“do” and tries to find a method called “doB()”. If such
a method is found, it is invoked. If no such method is
found, then SimEntityBase returns to the FEL algo-
rithm with no error.

Event Graphs have only one “keyword”—the event
called Run. The Run event is analogous to the main
method in C or Java programs. The Run event is
placed on the event list at the start of the simulation
run. That way the FEL always starts the run in a non-
empty state.

Simkit implements the Run event by adopting the
convention that every SimEntityBase, upon instantia-
tion, is examined for the presence of a doRun()
method. If the method is found, then a Run event is
scheduled to occur at time 0.0. If no Run event is
found, then there is no error. While Simkit encour-

ages the use of the Run event to initiate the simula-
tion, it is not required. However, if the Run event is
not used, the modeller must put events on the Event
List “by hand” prior to the onset of the simulation run.

A B
t

(i)

In Simkit, the Run event is only used to schedule
the first events. Simkit requires an additional initiali-
zation method, reset(), that is responsible for initializ-
ing (or reinitializing) the state variables to their initial
values. A call to Schedule.reset() just prior to starting
the simulation run invokes reset() on every subclass
of SimEntityBase that has been instantiated. Thus,
each simulation object only has to be responsible for
initializing its own state variables. Initializing state
variables is separate from initial scheduling so that the
first events that occur can reasonably assume that all
objects have been set to their legitimate initial state.

Starting and Stopping
The simulation run is controlled by the Schedule

class, which also houses the FEL. Schedule initiates
the run when there is a call to its startSimulation()
method, which executes FEL.

The simulation continues executing until the FEL is
empty. There are essentially four ways in Simkit by
which this can occur: (1) the FEL empties naturally of
its own accord; (2) there is an explicit call to Sched-
ule.stopAtTime(double) before Sched-
ule.startSimulation() is invoked; (3) there is a call to
Schedule.stopOnEvent(String, Class[], int) before
Schedule.startSimulation() is invoked; and (4) there is
a call to Schedule.stopSimulation() anywhere in the
program

If the FEL empties of its own accord, then the
simulation ends. The Schedule.startSimulation()
method returns to where it was invoked. Typically,
report methods are then invoked, depending on how
the simulation run was configured. The value of simu-
lated time (simTime) stays the same as last executing
event, but can be set back to time 0.0 with a call to
Schedule.reset();

A call to Schedule.stopAtTime(double) schedules
a Stop event, that just invokes Sched-
ule.stopSimulation(). For example, Sched-
ule.stopAtTime(10.0) stops the simulation at time 10.0
and leaves time at 10.0 when the run is over.

A call to Schedule.stopOnEvent(String, Class[],
int) or Schedule.stopOnEvent(String, int) causes the
simulation run to end after there have been a certain
number of events of the specified name occurring.
For example, invoking Sched-
ule.stopOnEvent(“Arrival”, 10) will cause the simula-
tion to end after the 10th Arrival event has occurred.
Similarly, Schedule.stopOnEvent(“Arrival”, new

August 2001 16

Is
su

e
32

 SIMULATION NEWS EUROPE

Class[] { Job.class }, 10) stops the simulation after the
10th Arrival(Job) event has occurred.

When the state variable numberArrivals is incre-
mented, a PropertyChangeEvent is fired. That is, an
instance of a PropertyChangeEvent is dispatched to
all objects that have registered as PropertyChangeLis-
teners to the ArrivalProcess instance. This feature is
useful for separating the code to model the state of
the system from the code to compute statistics,
graphs, or any other output-related task.

Example: The Arrival Process
The Arrival Process is the simplest nontrivial Event

Graph, essentially the “Hello World” of Event Graphs.

Arrival

{N++}

Run

{N = 0}

tAtA

Running a Simkit model thus consists of the
following tasks: T

EC
H

N
IC

AL N
O

TES
Issue 32/33

1. Instantiate desired objects

2. Register SimEventListener objects

3. Register PropertyChangeListener objects Figure 2. Arrival Process Event Graph
4. Set stopping time or stopping criteria The initialization of a Simkit simulation run breaks

the Run event into two parts: the initialization of state
variable values and the scheduling of initial events on
the Event List. The initial state values are set in a
method called reset(), while the scheduling of initial
events is done in the doRun() method. Recall that the
Run event is placed on the Event List at the start of
the simulation run.

5. Set the mode of the run (verbose/quiet, single-
step/continuously running)

6. Reset all SimEntityBase instances

7. Start the simulation

Depending on the simplicity or the complexity of
the model, some of these steps may be omitted. For
the Arrival Process model, we will implement these
tasks in a pure execution class—that is, a class con-
sisting of only a main() method.

The reset() method is typically not directly invoked,
but rather is invoked by a call to Schedule.reset().
This has the effect of invoking reset() on all SimEnti-
tyBase instances that have been created. Thus,
Schedule.reset() is like a big “reset” button on the
simulation model. The modeler does not have to keep
track of every SimEntityBase that has been created.

//1. Instantiate objects
ArrivalProcess arrival = new ArrivalProcess(…);

//4. Stopping criterion: at time 10.0
Schedule.stopAtTime(10.0);

//5. Verbose mode on
The Simkit implementation of the Arrival Process

is shown in Figure 3 (the complete code for all exam-
ples is in the Appendix).

Schedule.setVerbose(true);
//6. Reset all SimEntityBase instances

Schedule.reset();
//7. Start simulation

Schedule.startSimulation();private RandomVariate interarrival;
protected int numberArrivals; Figure 4. Execution Code for Arrival Process Test public void reset() {

numberArrivals = 0;
Note the use of the RandomVariate instance vari-

able in the code in Figure 3. The code in Figure 3
does not show how an instance of interarrival is ob-
tained. We will discuss Simkit’s approach to random
variate generation below. For now, it is sufficient to
note that an instance of RandomVariate has a method
called generate(), and each invocation of the gener-
ate() method returns a new random variate having a
particular distribution.

}
public void doRun() {

waitDelay(“Arrival”, interarrival.generate());
}
public void doArrival() {

firePropertyChange(“numberArrivals
“,numberArrivals, ++numberArrivals);

waitDelay(“Arrival”, interarrival.generate());
}

Figure 3. Simkit Code Snippet for Arrival Process

The Arrival Process class maintains a single state
variable, numberArrivals, that counts the cumulative
number of arrivals since time 0.0. The state variable
is incremented by one upon the occurrence of each
Arrival event. The reset() method therefore initializes
numberArrivals to zero and the method doArrival() in-
crements the value and schedules the next Arrival
event, after a random delay. The doRun() method
simply schedules the first Arrival event.

Listener Patterns
Simkit uses two “Listener” patterns to implement

its component interoperability. The SimEventListener
pattern is used to connect simulation components (in-
stances of SimEntityBase) in a loosely coupled man-
ner. As described above, SimEvents are always in-
voked by a callback from the FEL to the scheduling
object that ultimately invokes the corresponding “do”

 17 November 2001

 SIMULATION NEWS EUROPE

TE
C

H
N

IC
AL

 N
O

TE
S

SimEntityBase maintains an instance of Proper-
tyChangeSupport and provides a method fireProper-
tyChange(), with various signatures, to dispatch Prop-
ertyChangeEvents to its registered PropertyChangeL-
isteners. The convention adopted by Simkit models is
that every state change is accompanied by a corre-
sponding firing of a PropertyChangeEvent. For ex-
ample, in the Arrival Process above, instead of simply
incrementing the numberArrivals state variable, the
following code is typically used:

method. The SimEvent is then dispatched to every
SimEventListener that has explicitly been registered
interest in that object’s SimEvents.

A related pattern, the PropertyChangeListener pat-
tern, comes into play whenever a state variable
changes value. In that case, a PropertyChangeEvent
is dispatched to registered PropertyChangeListener
objects. The purpose of PropertyChangeEvents is to
support generic observation of the simulation state
trajectories, as well as any function thereof.

firePropertyChange(“numberarrivals”,

SimEvent Listener Pattern numberArrivals, ++numberArrivals);

The mechanism by which two simulation compo-
nents are linked is the SimEventListener pattern.
Every SimEntity implements the SimEventListener in-
terface, that defines a callback method. An instance
of a SimEventListener registers interest in hearing a
SimEntity's simulation events with the
addSimEventListener(SimEventListener) method.
Whenever a SimEvent occurs for the SimEntity in-
stance, notification is dispatched to all registered
SimEventListeners via the callback method process-
SimEvent(SimEvent).

This is using the firePropertyChange(String, int,
int) version. The String argument is the name of the
property, the first int parameter is the “old value” of the
property – the value before the state change was
made, and the second int parameter is the “new
value” of the property – the value after the property
was changed. Notice that the variable as the incre-
ment operator as a prefix rather than a postfix, since
the value of the expression is the incremented value
in this case, which is what is desired.

If the Simkit program adopts the convention of fir-
ing a PropertyChangeEvent for every state change,
then an effective decoupling occurs between the
model and the observation of the model (graphing re-
sults, estimating measures of performance, etc.). The
model itself does not need to estimate any statistics at
all. Instead, separate PropertyChangeListener ob-
jects can be created that perform estimation, analysis,
or plotting results.

The behaviour of a SimEventListener as imple-
mented in the processSimEvent(SimEvent) method
can be completely customized to suit the simulation
modeller’s needs. Most of the time, the modeller will
be content with the default behaviour as implemented
in the (abstract) SimEntityBase class. That behaviour
is that whenever a SimEvent is heard, the object at-
tempts to find a matching "do" method. If one is
found, then it is invoked. If none is found, then noth-
ing happens.

A second type of PropertyChangeListener event is
supported by Simkit, the IndexedPropertyChan-
geEvent. The IndexedPropertyChangeEvent is de-
fined in Simkit, since Java beans do not support in-
dexed PropertyChangeEvents. The IndexedProper-
tyChangeEvent is useful whenever the state changing
is indexed, as in an array. The index of the property
that had changed is included with the IndexedProper-
tyChangeEvent. Since IndexedPropertyChangeEvent
subclasses Java’s PropertyChangeEvent, any Proper-
tyChangeListener is able to “hear” it. An example of its
use is in the model of a transfer line discussed in the
following section.

The SimEventListener pattern is useful in imple-
menting component-based simulation models (Buss,
2000). For our introductory purposes in this paper, we
will not use the SimEventListener pattern.

Property Change Listener Pattern
One capability provided by Java is the ability to fire

PropertyChangeEvents whenever certain instance
variables change value. This capability is provided by
classes in the java.beans package, part of the stan-
dard Java 2 environment. The java.beans package
contains a class, PropertyChangeEvent that is dis-
patched to objects interested in the property, and an
interface, PropertyChangeListener, that provides a
common callback method from the source of the
PropertyChangeEvent.

More Examples
Multiple Server Queue

An Event Graph for the multiple server queue de-
fines two state variables: Q=the number of customers
in the queue and S=the number of available servers
The Event Graph for the Multiple Server Queue is
shown in

August 2001 18

Is
su

e
32

The java.beans package also has a helper class,
PropertyChangeSupport, that can register and unreg-
ister PropertyChangeListeners and can act as a proxy
for firing the PropertyChangeEvents. PropertyChan-
geEvents are different than SimEvents and do not di-
rectly interact with the FEL.

Figure 5. Event Graph for Multiple Server Queue
(see Buss, 2001).

 SIMULATION NEWS EUROPE

Arrival

{Q++}

Run Start
Service

End
Service

{Q = 0, S = k}

tAtA
tS(S > 0)

{Q--, S--} {S++}

(Q > 0)

public void doEndService() {
firePropertyChange(
"numberAvailableServers",
numberAvailableServers,

++numberAvailableServers);
firePropertyChange("numberServed",
++numberServed);
if (numberInQueue > 0) {

waitDelay("StartService", 0.0);
}

Figure 5. Event Graph for Multiple Server Queue }

Figure 6. Code for MultipleServerQueue Class The Multiple Server Queue is implemented in Sim-
kit by creating a MultipleServerQueue class that de-
fines “do” methods corresponding to the events in

T
EC

H
N

IC
AL N

O
TES

Issue 32/33

The code in Figure 6 shows instance variables that
correspond to the parameters and the state variables
of the Event Graph model. By convention, parame-
ters are defined to be private whereas state variables
are defined with protected access. Thus, subclasses
can change state variables but the data are still en-
capsulated. Parameters typically have both “setter”
and “getter” methods, whereas state variables only
have “getter” methods. For brevity, these methods
have not been shown in Figure 6.

Figure 5. Event Graph for Multiple Server Queue:
doRun(), doArrival(), doStartService(), and EndSer-
vice(). The Simkit code for these methods are shown
in Figure 6.
public class MultipleServerQueue

extends SimEntityBase {
private int totalNumberServers;
private RandomVariate interArrivalTime;
private RandomVariate serviceTime;

Edge Boolean conditions are implemented by
wrapping the waitDelay() call inside an “if” block, with
the Boolean condition on the “if” corresponding to the
Boolean edge condition. This is illustrated in the Arri-
val event scheduling of the StartService event and the
EndService event scheduling the StartService event.

protected int numberArrivals;
protected int numberInQueue;
protected int numberAvailableServers;
protected int numberServed;

public MultipleServerQueue(int numberServers,
RandomVariate iat, RandomVariate st) {

totalNumberServers = numberServers;
this.setInterArrivalTime(iat);
this.setServiceTime(st);

Arrival

{Q ++}

Run Start
Service

End
Service

{Q = 0, S = k}

tAtA
tS

(S > 0)

{Q --, S --}
{S ++}

(Q > 0)

Arrival

{Q ++}

Start
Service

End
Service

tS
(S > 0)

{Q --, S --}{S ++}

(Q > 0)

(U < p)

222

11
1

2

2

22

2

2

2

1

1

1

1

11111

}
public void reset() {

super.reset();
numberArrivals = 0;
numberInQueue = 0;
numberAvailableServers =

totalNumberServers;
numberServed = 0;

}
public void doRun() {

firePropertyChange("numberInQueue",
numberInQueue);

firePropertyChange(
"numberAvailableServers",
numberAvailableServers);

waitDelay("Arrival",
interArrivalTime.generate());

}
public void doArrival() {

Figure 7. Tandem Queue Event Graph firePropertyChange("numberInQueue",
numberInQueue, ++numberInQueue);

Tandem Queue Model waitDelay("Arrival",
interArrivalTime.generate());

A tandem queue model has two servers in series.
All entering customers start service at the first server.
Modelled as a multiple server queue. Customers
completing service at the first server require service at

if (numberAvailableServers > 0) {
waitDelay("StartService", 0.0);

}
}
public void doStartService() {

firePropertyChange(

the second server with probability p or leave the sys-
tem with probability 1-p. The Event Graph for this
system is shown in Figure 7 (see Buss, 2001).

"numberAvailableServers",
numberAvailableServers,
--numberAvailableServers);
firePropertyChange("numberInQueue",
numberInQueue, --numberInQueue);

Implementing this model in Simkit is a straightfor-
ward extension of the multiple server queue discussed

waitDelay("EndService",
serviceTime.generate());

}

 19 November 2001

 SIMULATION NEWS EUROPE

TE
C

H
N

IC
AL

 N
O

TE
S

above. The state variables are now Q1 and Q2, the
number in queue for the first and second station, re-
spectively, and S2 and S2, the number of available
servers at the first and second station.

The methods are likewise an obvious modification
of those for the multiple server queue. The one
change is in the EndService1 event, which adds the
scheduling of the Arrival2 event with probability p.
This functionality is shown in Figure 8.
protected double probToSecondServer;
protected RandomNumber rng;
. . .
public void doEndService1() {

firePropertyChange(“numberAvailableServers1”,
numberAvailableServers1,
++numberAvailableServers1);

if (numberInQueue1 > 0) {
waitDelay(“StartService1”, 0.0);

}
if (rng.draw() < probToSecondServer) {

waitDelay(“Arrival2”, 0.0);
}

}

Figure 8. Code Snippet for TandemQueue Class

Modeling Cancelling Edges
Cancelling edges are used in Event Graphs to re-

move previously scheduled events from the event list.
Cancelling edges are implemented in Simkit with the
interrupt() method. By convention, cancelling edges
for an event are executed after state transitions but
before scheduling edges.

The interrupt() method in Simkit behaves slightly
differently than in “pure” Event Graphs because of the
object-oriented nature of Simkit. The interrupt()
method applies to the instance on which it is invoked,
rather than globally as in the Event Graph world view.
This gives the simulation modeller finer-grained con-
trol over cancelling events.

The signature of interrupt is (String, Class[]),
where the String argument is the name of the event to
be cancelled and the Class[] array represents the ar-
guments on the event – that is, the signature of the
“do” method corresponding to the cancelled event.
The second argument may be omitted if a zero-
parameter event is being cancelled.

Server with Failures
A model to illustrate cancelling edges is the server

with failures (Buss, 2001). Here a single server oper-
ates continuously while processing jobs as they arrive.
The server fails after a certain (random) time of opera-
tion (regardless of the time spent processing jobs) af-
ter which it immediately begins repair. After a (ran-
dom) repair time, the server is available to process
jobs again. It is assumed that a job in process when a
failure occurs goes back to the queue and is issued a

new service time when the server becomes available
again. The Event Graph for this model is shown in
Figure 9 (Note that the Event Graph in Buss(2001) for
this model has an error in its state transition func-
tions).

Arrival

{Q++}

Start
Service

End
Repair Failure

End
Service

tA
t
S(S > 0)

{Q--, S--} {S++}
(Q > 0)

{F--, S = 1} {F++,
Q += 1 - S,

S = 0}

t
F

tR

(Q > 0)

Figure 9. Server with Failures Event Graph

This model can be implemented in Simkit by sub-
classing the MultipleServerQueue class described
above. The code for the Simkit program for the
Server with Failures model is shown in Figure 10 (the
interrupt call that implements the cancelling edge in
Figure 9 is shown in bold for clarity). As before, the
constructor and accessor methods are omitted for
brevity.
public void doRun() {

super.doRun();
waitDelay("Failure",

timeToFailure.generate(), 1.0);
}
public void doFailure() {

int temp = this.getNumberInQueue();
numberInQueue +=

1 - numberAvailableServers;
firePropertyChange("numberInQueue", temp,

numberInQueue);
temp = getNumberAvailableServers();
numberAvailableServers = 0;
firePropertyChange(

"numberAvailableServers", temp,
numberAvailableServers);

failed = !failed;
firePropertyChange("failed",

new Boolean(!failed),
new Boolean(failed));

interrupt("EndService");
waitDelay("EndRepair",

August 2001 20

Is
su

e
32 repairTime.generate());

}
public void doEndRepair() {

failed = !failed;
firePropertyChange("failed",

new Boolean(!failed),

 SIMULATION NEWS EUROPE

new Boolean(failed));
numberAvailableServers = 1;
firePropertyChange(

"numberAvailableServers", 0, 1);
if (numberInQueue > 0) {

waitDelay("StartService", 0.0);
}
waitDelay("Failure",

timeToFailure.generate(), 1.0);

T
EC

H
N

IC
AL N

O
TES

Issue 32/33

}

Figure 10. Simkit Code for Server with Failures

In Figure 10, only the next pending EndService
event that has been scheduled by that instance of
ServerWithFailures will be removed from the event
list. If there is no such pending event then nothing
happens.

In the state transition for the Failure event (doFail-
ure() method) firing the PropertyChangeEvents for the
state variables is slightly more lengthy that in previous
models. Since the state transitions cannot be done “in
place” with the increment or decrement operators, the
old value of the state variable is saved in a temporary
variable and passed as the second argument in the
firePropertyChange() method.

The waitDelay() statement to schedule the Failure
event has a third argument that is the priority of the
scheduled event. The default priority is 0.0, so setting
the priority of the Failure event to 1.0 ensures that it
will occur before any StartService or Arrival events
scheduled to occur at the same time.

Note that subclassing MultipleServerQueue was
made possible by the fact that the state variables in
MultipleServerQueue were declared to have protected
access rather than private.

Passing Parameters on Edges
An important feature of Event Graphs is the ability

to pass parameters on scheduling edges. This en-
ables information about the simulation’s state at a par-
ticular simulation time to be transmitted to a future
event in a kind of “time capsule.” Parameters on
edges are represented in Event Graphs by putting
them in a box on the edge, as shown in Figure 11.
The corresponding scheduling edge must have an ar-
gument that matches the parameters, and vice versa.
Cancelling edges can “pass” parameters too, but the
meaning is slightly different. When a cancelling edge
has a parameter, then the next event that matches
both the name and the value of the parameter is can-
celled (that is, simply removed from the FEL).

Simkit passes parameters using a variant of wait-
Delay() that adds a third argument of type Object[].
This array of objects should have the values to be
passed to the scheduled event so that the signature of
the corresponding “do” method is matched. All primi-

tive arguments are wrapped in Java’s Object equiva-
lents. That is, a double argument is passed as a
Double object, an int argument is passed as an Inte-
ger object, etc. The Simkit code for the scheduling
edge in Figure 11 is as follows (assuming that j and k
are both primitive integers):

public void doA() {
<state changes for event A>
if (i) {

waitDelay(“B”, t,
new Object[] {new Integer(j)});

}
}
public void doB(int k) {...}

Similarly, the Simkit code for the cancelling edge
in Figure 11 is as follows:

public void doA() {
<state change for event A>
if (i) {

interrupt(“B”,
new Object[]{new Integer(j)});

}
}
public void doB(int k) {...}

Note the syntactic difference between j and k here
in both the code and in the Event Graph. The value
passed on the scheduling edge, j, is an expression,
whereas k on the event B is a format parameter. Note
also that the expression j must be computable at the
event A. That is, j must be a function of state vari-
ables, model parameters, and parameters that may
have been passed to A. Thus, event B can use k in

any expression it defines.

A B(k)

(i)

B(k)

Figure 11. Parameters on Edges

The signature for the doB() method could be Inte-
ger (the object wrapper for the primitive int) instead of
the int with the same effect. However, care must be
taken to not overload “do” methods with the primitive
and the corresponding object wrapper types.

The Transfer Line Model
The Event Graph model for a transfer line is as fol-

lows (Buss, 2001). Arriving customers are processed
by n workstations in a series, each consisting of a

 21 November 2001

 SIMULATION NEWS EUROPE

TE
C

H
N

IC
AL

 N
O

TE
S

multiple-server queue. Upon completion of service at
each workstation, a customer proceeds to the next
workstations and departs the system when service at
the last workstation is complete. The Event Graph is
shown in Figure 12.

}
public void doStartService(int i) {

fireIndexedPropertyChange(i, "numberInQueue",
new Integer(numberInQueue[i]),

new Integer(--numberInQueue[i]));
fireIndexedPropertyChange(i,

"numberAvailableServers",
new Integer(numberAvailableServers[i]),
new Integer(--numberAvailableServers[i]));

Arrival
(i)

{Q ++}

Start
Service

(i)

End
Service

(i)

t
S

Arrival

tA (S > 0)

{Q --, S --} {S ++}

(Q > 0)

(i < n -1)

0 i

i

i
i

i

iii

i
i

waitDelay("EndService",
serviceTime[i].generate(),
new Integer(i));

}
public void doEndService(int i) {

fireIndexedPropertyChange(i,
"numberAvailableServers",
new Integer(numberAvailableServers[i]),
new Integer(++numberAvailableServers[i]));

if (numberInQueue[i] > 0) {
waitDelay("StartService", 0.0,

new Integer(i));

Figure 12. Transfer Line Event Graph }
if (i < getNumberWorkstations() - 1) {

waitDelay("Arrival", 0.0,The Simkit implementation of the transfer line in
Figure 12 is essentially identical to the multiple server
queue model in Figure 6, except that the scalar state
variables in the multiple server queue model are now
replaced by arrays. Also, since the events have pa-
rameters, the corresponding “do” methods have
signatures that match. These arguments correspond
to the index of the workstation at which the event “oc-
curs.” For example, doArrival(int i) means that a job
arrives to workstation i.

new Integer(i + 1));
}

}

Figure 13. Code for Transfer Line Model

Collecting Statistics
Simkit uses the PropertyChangeListener pattern

for collecting statistics from a simulation model. This
pattern provides a great deal of flexibility for what gets
collected, how it is collected, and which measures of
performance are estimated. This approach also en-
ables a clean separation between implementing the
dynamics of the model and gathering data. The
model can thus be created without any concern over
which statistics are to be estimated, and the model
classes themselves will not contain any code involved
with statistics. All a model class must do is make sure
it fires a PropertyChangeEvent whenever a state vari-
able changes its value. This facility is provided by the
SimEntityBase class by means of the fireProper-
tyChange() method. The first argument in fireProper-
tyChange() is the name of the property being fired, a
String, and the second is the new value of the prop-
erty, which can be a primitive, or an Object.

Note that the Event Graph in Figure 12 has two Ar-
rival events, one with no parameters and one with a
parameter. These are implemented in the Simkit code
by overloading the doArrival method, as shown in
Figure 13.
public void doRun() {

for (int i = 0; i < numberInQueue.length;
i++) {
fireIndexedPropertyChange(i,

"numberInQueue", numberInQueue[i]);
}
for (int i = 0; i < numberInQueue.length;

i++) {
fireIndexedPropertyChange(i,
"numberAvailableServers",
numberAvailableServers[i]);

}
waitDelay("Arrival", Data gathering is performed by classes that im-

plement the PropertyChangeListener interface. This
interface is part of the standard Java library in the
package called java.beans. The PropertyChangeLis-
tener interface specifies a a single callback method,
propertyChange(PropertyChangeEvent). The Proper-
tyChangeEvent object passed to the listener contains
two key pieces of data: the name of the property that
has changed in the source object (a String) and the
new value of the property (an Object). What the lis-
tener does with this information is, of course, com-
pletely dependent on the implementation of the Prop-
ertyChangeListener class. Note that as many listen-
ers can be registered with a source of PropertyChan-

interArrivalTime.generate());
}
public void doArrival() {

firePropertyChange("numberArrivals",
++numberArrivals);

waitDelay("Arrival",
interArrivalTime.generate());

waitDelay("Arrival", 0.0, new Integer(0));
}
public void doArrival(int i) {

August 2001 22

Is
su

e
32

fireIndexedPropertyChange(i,"numberInQueue",
new Integer(numberInQueue[i]),
new Integer(++numberInQueue[i]));

if (numberAvailableServers[i] > 0) {
waitDelay("StartService", 0.0,

new Integer(i));
}

 SIMULATION NEWS EUROPE

Figure 20. Screen Capture of Property Change Frame

T
EC

H
N

IC
AL N

O
TES

Issue 32/33

geEvents as desired (up to the limits of the Java vir-
tual machine, of course). It is possible for a Proper-
tyChangeListener to register for just a single property.

msq.addPropertyChangeListener(nasStat);

Figure 14. Code to Instantiate and Register Lis-
teners

Two simple classes for data collection that are
used in Simkit models are SimpleStatsTimeVarying
and SimpleStatsTally. Instances of these classes
compute summary statistics for a single property of
the time-varying or tally type, respectively. The in-
stance is registered as a PropertyChangeListener with
an object that fires a PropertyChangeEvent with the
given name.

In this example two PropertyChangeListeners are
listening to one object firing the PropertyChan-
geEvents. It is also possible for a state variable to
change in more than one object. In that case, one lis-
tener can simply be registered with all the objects re-
sponsible for that property. When the simulation ends
(or during the simulation run, if needed) basic sample
statistics can be obtained from the SimpleStats ob-
jects using the appropriate “getter” method. For ex-
ample, getMean() returns the sample mean, getVari-
ance() the sample variance, etc. Running the multiple
server queue with the two SimpleStats listeners as in
Figure 14 can result in output like that shown in Figure
15.

When a SimpleStats object “hears” a Proper-
tyChangeEvent, it checks to see whether the property
name is identical to the one it is listening for. If so,
then it updates its counters with the new property
value it retrieves from the PropertyChangeEvent. This
value must be an instance of Java’s Number class.

For example, the MultipleServerQueue fires Prop-
ertyChangeEvents for properties named “numberIn-
Queue” and “numberAvailableServers” (see Figure 6).
Since these are time-varying state variables, to collect
statistics on them two instances of SimpleStatsTime-
Varying are created. One is configured to listen for a
property called “numberInQueue” and the second for
a property called “numberAvailableServers.” When-
ever a a firePropertyChange() method is invoked in a
MultipleServerQueue instance, a PropertyChan-
geEvent is dispatched to all registered listeners, in this
case each of the two SimpleStatsTimeVarying ob-
jects. The code to instantiate the two SimpleS-
tatsTimeVarying instances, and register them as
PropertyChangeListeners to an instance of Multiple-
ServerQueue is shown in Figure 14. This code can
be written in either a main() method or in a simulation
“executive” class.

Multiple Server Queue with 2 servers

Service time distribution is Gamma (2.5, 1.2)

Arrival Process with Exponential (1.7) interarrival
times

Simulation ended at time 1000.0000

There have been 614 customers arrive to the system

There have been 607 customers served

Average Number in Queue 4.0739

Average Utilization 0.9166

Figure 15. Example of Output from Multiple
Server Queue Model

In the output in Figure 15, only the estimated av-
erages were produced by the SimpleStatsTimeVary-
ing object; the rest was simply custom-written report
template for this model.

MultipleServerQueue msq =
new MultipleServerQueue(...);

SimpleStatsTimeVarying niqStat =

The loose coupling between the model’s state and
the gathering of data enables a considerable degree
of flexibility in what can be done with the model with-
out editing or recompiling the simulation classes. For

new SimpleStatsTImeVarying(“numberInQueue);
SimpleStatsTimeVarying nasStat =

new SimpleStatsTImeVarying(
“numberAvailableServers);

msq.addPropertyChangeListener(niqStat);

 23 November 2001

 SIMULATION NEWS EUROPE

TE
C

H
N

IC
AL

 N
O

TE
S

example, suppose a plot of the trajectory for a given
state variable is desired. A PropertyChangeListener
class can be written that listens for the given state
variable property and plots the next observation when
the PropertyChangeEvent is heard. No invasive edit-
ing of the original class’s source code is required to
add substantially different features to the overall
model.

To illustrate, suppose a more detailed trace of cer-
tain state variable is required for debugging purposes.
Simple class called PropertyChangeFrame is a Prop-
ertyChangeListener that can be registered to listen to
the MultipleServerQueue (in addition to the SimpleS-
tatsTimeVarying instances already registered). The
PropertyChangeFrame simply writes the event and
the state change whenever it “hears” the Proper-
tyChangeEvent. A screen capture of this is shown in
Figure 20.

Generating Random Variates
Simkit’s design permits much flexibility for generat-

ing random variates used in the simulation models.
The underlying design goal was to enable the model-
ler to change any random variate in a model to any
desired probability distribution without having to re-
compile the model. This was to extend to classes
generating random variates implemented after the
compilation of the original model.

Simkit uses a combination of a RandomVariate in-
terface and an abstract factory that is called to pro-
duce instances of the desired implementation using
only “generic” data–that is, Strings, Objects, and
numbers. A full discussion of Simkit’s design for gen-
erating random will be presented elsewhere.

Obtaining Simkit
The latest version of Simkit, including the source

code, can be downloaded from the World Wide Web
at http://diana.gl.nps.navy.mil/Simkit/. The source
code for the examples presented in this paper may be
obtained from the above URL as well. Simkit is copy-
right under the GNU Public License (GPL), which
permits its use without any licensing fee.

http://diana.gl.nps.navy.mil/Simkit/

Conclusions
This article has presented a basic introduction to

Simkit, an object-oriented, component-based platform
that can be used to create discrete event simulation
models using Event Graph methodology. Since Event
Graphs can be used to represent any discrete event
system, there are no theoretical limitations to the DES
models that can be implemented in Simkit. The loose
coupling in Simkit’s component architecture facilitate a
significant degree of reusability of simulation compo-
nents. The Listener patterns used to implement the

loose coupling give the modeller a great degree of
flexibility in adding new features to existing models
without invasive changes to the source code. Simula-
tion models using Simkit can be built and executed on
any Java 2-enabled platform.

References
[1] Buss, A. 1996. Modeling with Event Graphs,
Proceedings of the 1996 Winter Simulation
Conference, J. M. Games, D. J. Morrice, D. T.
Brunner, and J. J. Swain, eds.
[2] Buss, A. 2000. Component-Based Simulation
Modeling, Proceedings of the 2000 Winter Simulation
Conference, J. A. Joines, R. R. Barton, K. Kang, and
P. A. Fishwick, eds.
[3]Buss, A. 2001. Basic Discrete Event Modeling.
Simulation News Europe.
[4] Law, A. and D. Kelton. 2000. Simulation Modeling
and Analysis, Third Edition, McGraw-Hill, Boston. MA.
[5] Schruben, L. 1983. Simulation Modeling with Event
Graphs, Communications of the ACM, 26, 957-963.
[6] Schruben, L. 1995. Graphical Simulation Modeling
and Analysis Using Sigma for Windows, Boyd and
Fraser Publishing Company, Danvers, MA.
[7] Schruben, L and E. Yücesan. 1993. Modeling
Paradigms for Discrete Event Simulation, Operations
Research Letters, 13, 265–275.
[8] Schruben, L. and E. Yücesan. 1994. Transforming
Petri Nets Into Event Graph Models. Proceedings of
the 1994 Winter Simulation Conference, J. D. Tew, S.
Manivannan, D. A. Sadowski, and A. F. Seila, eds.

 Appendix
The comple source code for the ArrivalProcess

class discussed above is shown below.
package examples;
import simkit.SimEntityBase;
import simkit.random.RandomNumber;
import simkit.random.RandomVariate;
import simkit.random.RandomNumberFactory;
import simkit.random.RandomVariateFactory;
import simkit.random.CongruentialSeeds;
public class ArrivalProcess extends SimEntityBase {

private int numberArrivals;
private RandomVariate interArrivalTime;

public ArrivalProcess(String distribution,
Object[] parameters, long seed) {
interArrivalTime =
RandomVariateFactory.getInstance(

distribution, parameters, seed);
}
public void reset() {

super.reset();
numberArrivals = 0;

}

August 2001 24

Is
su

e
32

public void doRun() {
super.reset();
firePropertyChange("numberArrivals",

numberArrivals);
waitDelay("Arrival",

http://diana.gl.nps.navy.mil/Simkit/

 SIMULATION NEWS EUROPE

interArrivalTime.generate());
}
public void doArrival() {

firePropertyChange("numberArrivals",
++numberArrivals);

waitDelay("Arrival",
interArrivalTime.generate());

}
public void setSeed(long seed) {

interArrivalTime.getRandomNumber().
setSeed(seed);

}
public long getSeed() {

return interArrivalTime.getRandomNumber(). T
EC

H
N

IC
AL N

O
TES

Issue 32/33

getSeed();
}
public static void main(String[] args) {

SimEntityBase arrival =
new ArrivalProcess(
"simkit.random.ExponentialVariate",
new Object[] {new Double(3.2)},
CongruentialSeeds.SEED[0]);

simkit.Schedule.reset();
simkit.Schedule.setVerbose(true);
simkit.Schedule.stopOnEvent("Arrival", 5);
simkit.Schedule.startSimulation();

}
}

To run the example, make sure that you have
jdk1.2 or greater and that the simsystem.zip file is on
the classpath. The source code should be in a subdi-
rectory called examples. To compile for the command
line, change to the directory just above examples and
enter (if running on Unix or a Unix-like OS, change the
slash to a forward slash).
javac examples\ArrivalProcess.java
java examples.ArrivalProcess

 25 November 2001

	Technical Notes
	Discrete Event Programming with Simkit

	Arnold Buss
	Operations Research Department, Naval Postgraduate School
	Monterey, CA 93943-5000 U.S.A.
	Introduction
	Event List Implementation
	SimEntity and SimEntityBase
	Starting and Stopping
	Example: The Arrival Process
	Listener Patterns
	SimEvent Listener Pattern
	Property Change Listener Pattern
	More Examples
	Multiple Server Queue
	Tandem Queue Model
	Modeling Cancelling Edges
	Server with Failures
	Passing Parameters on Edges
	The Transfer Line Model
	Collecting Statistics
	Generating Random Variates
	Obtaining Simkit
	Conclusions
	References
	Appendix

